حرکت یکنواخت یکنواخت با شتاب. فرمول ها و حل مسئله

فهرست مطالب:

حرکت یکنواخت یکنواخت با شتاب. فرمول ها و حل مسئله
حرکت یکنواخت یکنواخت با شتاب. فرمول ها و حل مسئله
Anonim

یکی از متداول ترین انواع حرکت اجسام در فضا که انسان به صورت روزانه با آن مواجه می شود، حرکت مستطیلی با شتاب یکنواخت است. در پایه نهم مدارس آموزش عمومی در درس فیزیک این نوع حرکت به تفصیل بررسی می شود. آن را در مقاله در نظر بگیرید.

ویژگی های حرکتی حرکت

حرکت با شتاب متفاوت
حرکت با شتاب متفاوت

قبل از ارائه فرمول‌هایی که حرکت مستقیم شتاب‌دار یکنواخت را در فیزیک توصیف می‌کنند، کمیت‌هایی را که آن را مشخص می‌کنند در نظر بگیرید.

اول از همه، این مسیر طی شده است. آن را با حرف S نشان خواهیم داد. طبق تعریف، مسیر مسافتی است که بدن در طول مسیر حرکت طی کرده است. در مورد حرکت مستقیم، مسیر یک خط مستقیم است. بر این اساس مسیر S طول پاره مستقیم روی این خط است. در سیستم SI واحدهای فیزیکی بر حسب متر (m) اندازه گیری می شود.

سرعت، یا همانطور که اغلب به آن سرعت خطی می گویند، نرخ تغییر وضعیت بدن درفضا در طول مسیر خود بیایید سرعت را با v مشخص کنیم. بر حسب متر بر ثانیه (m/s) اندازه‌گیری می‌شود.

شتاب سومین کمیت مهم برای توصیف حرکت یکنواخت مستطیل با شتاب است. این نشان می دهد که سرعت بدن در زمان چقدر سریع تغییر می کند. شتاب را به صورت a تعیین کنید و آن را بر حسب متر بر ثانیه تعریف کنید (m/s2).

مسیر S و سرعت v مشخصه های متغیر برای حرکت یکنواخت مستطیل با شتاب هستند. شتاب یک مقدار ثابت است.

رابطه بین سرعت و شتاب

بیایید تصور کنیم که یک خودرو در امتداد یک جاده مستقیم بدون تغییر سرعت خود در حال حرکت است. v0. به این حرکت یکنواخت می گویند. در مقطعی از زمان، راننده شروع به فشار دادن پدال گاز کرد و ماشین شروع به افزایش سرعت کرد و شتاب a را به دست آورد. اگر از لحظه ای که ماشین شتاب غیر صفر به دست آورد شروع به شمارش زمان کنیم، معادله وابستگی سرعت به زمان به شکل زیر در می آید:

v=v0+ at.

در اینجا عبارت دوم افزایش سرعت را برای هر دوره زمانی توصیف می کند. از آنجایی که v0 و a مقادیر ثابت هستند، و v و t پارامترهای متغیر هستند، نمودار تابع v یک خط مستقیم خواهد بود که محور y را در نقطه (0; v) قطع می کند. 0)، و داشتن یک زاویه تمایل معین به محور آبسیسا (مماس این زاویه برابر با مقدار شتاب a است).

نمودارهای سرعت
نمودارهای سرعت

شکل دو نمودار را نشان می دهد. تنها تفاوت بین آنها این است که نمودار بالایی با سرعت در مطابقت داردوجود مقداری اولیه v0، و مقدار پایین تر، سرعت حرکت یکنواخت مستطیل با شتاب را هنگامی که بدن شروع به شتاب گرفتن از حالت سکون می کند (مثلاً یک ماشین استارت) را توصیف می کند.

راه اندازی ماشین ها
راه اندازی ماشین ها

توجه داشته باشید، اگر در مثال بالا راننده به جای پدال گاز، پدال ترمز را فشار دهد، حرکت ترمز با فرمول زیر توصیف می شود:

v=v0- at.

این نوع حرکت را مستطیل به همان اندازه آهسته می نامند.

فرمول مسافت طی شده

در عمل، اغلب مهم است که نه تنها شتاب، بلکه ارزش مسیری را که بدن طی یک دوره زمانی معین طی می کند، بدانیم. در مورد حرکت یکنواخت مستطیلی با شتاب، این فرمول شکل کلی زیر را دارد:

S=v0 t + at2 / 2.

جمله اول مربوط به حرکت یکنواخت بدون شتاب است. عبارت دوم سهم خالص مسیر تسریع شده است.

اگر یک جسم متحرک کند شود، عبارت مسیر به شکل زیر در می آید:

S=v0 t - at2 / 2.

بر خلاف حالت قبلی، در اینجا شتاب بر خلاف سرعت حرکت است که منجر به صفر شدن سرعت حرکت دومی مدتی پس از شروع ترمزگیری می شود.

حدس زدن اینکه نمودارهای توابع S(t) شاخه های سهمی باشند کار دشواری نیست. شکل زیر این نمودارها را به صورت شماتیک نشان می دهد.

نمودارهای مسیر
نمودارهای مسیر

پارابولای 1 و 3 مربوط به حرکت شتابان بدن است، سهمی 2فرآیند ترمز را شرح می دهد. مشاهده می شود که مسافت طی شده برای 1 و 3 به طور مداوم در حال افزایش است، در حالی که برای 2 به مقداری ثابت می رسد. مورد دوم به این معنی است که بدن از حرکت ایستاده است.

در ادامه مقاله سه مشکل مختلف را با استفاده از فرمول های بالا حل خواهیم کرد.

وظیفه تعیین زمان حرکت

ماشین باید مسافر را از نقطه A به B برساند فاصله بین آنها 30 کیلومتر است. مشخص است که یک ماشین با شتاب 1 متر بر ثانیه به مدت 20 ثانیه حرکت می کند2. سپس سرعت آن تغییر نمی کند. چقدر طول می کشد تا یک ماشین یک مسافر را به نقطه B برساند؟

مسافتی که خودرو در 20 ثانیه طی می کند برابر خواهد بود:

S1=at12 / 2.

در عین حال سرعتی که او در 20 ثانیه می گیرد:

v=at1.

سپس زمان سفر مورد نظر t را می توان با استفاده از فرمول زیر محاسبه کرد:

t=(S - S1) / v + t1=(S - at 12 / 2) / (a t1) + t1.

اینجا S فاصله بین A و B است.

بیایید تمام داده های شناخته شده را به سیستم SI تبدیل کرده و آن را به عبارت نوشته شده جایگزین کنیم. ما پاسخ را دریافت می کنیم: t=1510 ثانیه یا تقریباً 25 دقیقه.

مشکل محاسبه فاصله ترمز

حالا بیایید مشکل حرکت آهسته یکنواخت را حل کنیم. فرض کنید یک کامیون با سرعت 70 کیلومتر در ساعت حرکت می کند. جلوتر، راننده چراغ قرمز را دید و شروع به توقف کرد. اگر ماشین در 15 ثانیه توقف کند، فاصله توقف چقدر است.

فاصله توقف S را می توان با استفاده از فرمول زیر محاسبه کرد:

S=v0 t - at2 / 2.

زمان کاهش سرعت t و سرعت اولیه v0می دانیم. با توجه به اینکه مقدار نهایی آن صفر است، شتاب a را می توان از عبارت سرعت پیدا کرد. ما داریم:

v0- at=0;

a=v0 / t.

با جایگزینی عبارت به دست آمده در معادله، به فرمول نهایی مسیر S می رسیم:

S=v0 t - v0 t / 2=v0 0t / 2.

مقادیر شرط را جایگزین کنید و پاسخ را یادداشت کنید: S=145.8 متر.

مشکل برای تعیین سرعت در سقوط آزاد

سقوط آزاد اجسام
سقوط آزاد اجسام

شاید رایج ترین حرکت مستطیلی یکنواخت شتابدار در طبیعت، سقوط آزاد اجسام در میدان گرانشی سیارات باشد. بیایید مشکل زیر را حل کنیم: یک جسم از ارتفاع 30 متری رها می شود. وقتی با زمین برخورد می کند چه سرعتی خواهد داشت؟

سرعت مورد نظر را می توان با استفاده از فرمول محاسبه کرد:

v=gt.

جایی که g=9.81 m/s2.

زمان سقوط بدن را از عبارت مربوطه برای مسیر S تعیین کنید:

S=gt2 / 2;

t=√(2S / g).

زمان t را با فرمول v جایگزین کنید، دریافت می کنیم:

v=g√(2S / g)=√(2Sg).

مقدار مسیر S پیموده شده توسط جسم از شرط مشخص می شود، آن را در معادله جایگزین می کنیم، می گیریم: v=24، 26 m/s یا حدود 87کیلومتر در ساعت.

توصیه شده: